Wednesday, October 13, 2021
বাড়িগণিতগণিতের সৌন্দর্যঃ সবচেয়ে বড় সংখ্যাগুলো

গণিতের সৌন্দর্যঃ সবচেয়ে বড় সংখ্যাগুলো

- Advertisement -

এখন কিছু বড় বড় সংখ্যা নিয়ে আলোচনা করব।

আমাদের দৈনন্দিন জীবনে সবচেয়ে বড় যে সংখ্যাটি ব্যবহৃত হয় সেটা হল বিলিয়ন। টাকা গণনার জন্য এই সংখ্যাটি ব্যবহৃত হয়। আমাদের দেশের দু-চারজন মানুষ এই সংখ্যাটি ব্যবহার করেন। দেশের সামগ্রিক অর্থনীতির হিসাবের ক্ষেত্রে আরেকটু বড় সংখ্যা ব্যবহৃত হয়, ট্রিলিয়ন। এই ক্ষেত্রটির বাইরে আমাদের গণনা মিলিয়ন পর্যন্তই সীমাবদ্ধ।

১ মিলিয়ন(Million) = ১০০০ হাজার = ১০০০০০০ = ১০^৬
১ বিলিয়ন(Billion) = ১০০০ মিলিয়ন = ১০০০০০০০০০ = ১০^৯
১ ট্রিলিয়ন(Trillion) = ১০০০ বিলিয়ন = ১০০০০০০০০০০০০ = ১০^১২

ট্রিলিয়নের বেশী যদিও হিসেব করতে হয়না এবং অদূর ভবিষ্যতে সেই সম্ভবনা অতি ক্ষীণ, তথাপি, যেহেতু এটা একটা গণিত বিষয়ক লেখা এই ধারাটি আরেকটু লম্বা করা যাক।

কোয়াড্রিলিয়ন(Quadrillion ) = ১ এর পর ১৫ টা শুন্য = ১০^১৫
কুইন্টিলিয়ন(QuintillionQuintillion) = ১ এর পর ১৮ টা শুন্য = ১০^১৮
সেক্সটিলিয়ন(Sextillion) = ১ এর পর ২১ টা শুন্য = ১০^২১
সেপটিলিয়ন(Septillion) = ১০^২৪
অক্টিলিয়ন(Octillion) = ১০^২৭
ননিলিয়ন(Nonillion) = ১০^৩০
ডেসিলিয়ন(Decillion) = ১০^৩৩
আনডেসিলিয়ন(Undecillion) = ১০^৩৬
ডুওডেসিলিয়ন(Duodecillion) = ১০^৩৯
ট্রেডেসিলিয়ন(Tredecillion) = ১০^৪২
কোয়াটোওরডেসিলিয়ন(Quattuordecillion) = ১০^৪৫
কুইনডেসিলিয়ন(Quindecillion) = ১০^৪৮
সেক্সডেসিলিয়ন(Sexdecillion) = ১০^৫১
সেপ্টেনডেসিলিয়ন(Septendecillion) = ১০^৫৪
অক্টোডেসিলিয়ন(Octodecillion) = ১০^৫৭
নভেমডেসিলিয়ন(Novemdecillion) = ১০^৬০
ভিজিন্টিলিয়ন(Vigintillion) = ১০^৬৩

এবারে বিশেষ কিছু বড় সংখ্যা:
গুগোল(Googol): এই সংখ্যাটির মান ১০^১০০। এটি সাধারন বৈজ্ঞানিক ক্যালকুলেটরের (scientific calculator) গণনার সীমা। এটি এত বড় সংখ্যা যে, এই মহাবিশ্বের মোট পরমানুর সংখ্যা এর কাছে নস্যি! সংখ্যাটি প্রথম প্রবর্তন করেন আমেরিকান গণিতবিদ এডওয়ার্ড কাসনার ১৯৩৮ সালে। গুগোল নামটি দেয় কাসনারের ৯ বছর বয়সী ভাতিজা মিল্টন সিরোট্টা। যদিও গনিত শাস্ত্রে এই সংখ্যাটি বিশেষ কোনো গুরুত্ব বহন করে না তবে অন্যান্য বড় বড় পরিমানের সাথে তুলনা করার জন্য এই সংখ্যাটি ব্যবহার করা হয় (আমি যেমন একটু আগে মহাবিশ্বের মোট পরমানুর সংখ্যা এর সাথে তুলনা করেছি)। এই সংখ্যাটি ৭০!(Factorial 70) এর কাছাকাছি মানের ।

সেন্টিলিয়ন(Centillion) = ১০^৩০৩, এই সংখ্যাটি যে কত বড় তা কল্পনাতীত! একটু ধারনা দেয়ার চেষ্টা করি; এই মহাবিশ্বে যত সংখ্যক পরমানু আছে ততসংখ্যাক মহাবিশ্ব যদি কল্পনা করি তাহলে সেই সমস্ত মহাবিশ্বে সবমিলিয়ে যতসংখ্যক পরমানু থাকবে এই সংখ্যাটি তার চেয়েও বড়!(মাথা ঘোরাচ্ছে কি?)

গুগোলপ্লেক্স(googolplex): এই সংখ্যাটির মান ১০^googol। যদিও খুব সহজেই googol নাম ব্যবহার করে সংখ্যাটি লিখে ফেলা গেল। কিন্ত সংখ্যা লেখার প্রচলিত পদ্ধতিতে অর্থাৎ ১০০০০০০০……এভাবে যদি এই সংখ্যাটিকে লিখতে চাই তাহলে সেটা একটা অসম্ভব কাজ হবে। কারনটা এখন ব্যখ্যা করছি; এই সমগ্র মহাবিশ্বের মোট আয়তনের তুলনায় এর মধ্যস্থিত পরমানুগুলোর মোট আয়তন অতি অতি অতি নগন্য। এখন এই মহাবিশ্বের সম্পুর্ণ স্থানটিকে যদি পরমানু দিয়ে ঠেসে দেয়া হয় এবং প্রতিটি পরমানুতে এই সংখ্যাটির একটি করে অঙ্ক লেখা হয়, তারপরেও পুরো সংখ্যাটি লিখে শেষ করা যাবে না!

গ্রাহামের নাম্বার (Graham’s number): এই সংখ্যাটির অবতারনা করেন রোনাল্ড গ্রাহাম। রামজে থিওরী নামক একটি সমস্যার সমধান হিসেবে এই সংখ্যাটি বিবেচনা করা হয়। এই সংখ্যাটি জানার আগে একটা বড়সড় দম নিয়ে নিন। তবে ভালো হয় কিছুক্ষণ বিশ্রাম নিয়ে নিলে কিংবা সবচেয়ে ভালো হয় এক বেলা ঘুমিয়ে আসলে। এই সংখ্যাটিকে প্রচলিত সূচক দিয়ে প্রকাশ করার কোনো ব্যবস্থা নাই। একারনে এই সংখ্যাটিকে প্রকাশ করার জন্য একটি নতুন চিহ্নের অবতারনা করা হয়েছে। সেটা হল: ‘↑’

এই চিহ্নটি ব্যবহার করে গ্রাহামের সংখ্যা লেখা হয়:

এখানে প্রত্যেকটি স্তরে ↑ এর সংখ্যা নির্ধারিত হয় তার আগের স্তরের ↑ এর সংখ্যা অনুযায়ী। গ্রাহামের সংখ্যাটিকে(G) সংজ্ঞায়িত করা যায় এভাবে,
G= g(64)
যেখানে, ১ম স্তরের জন্য g(1) = 3↑↑↑↑3, n তম স্তরের জন্য g(n)= 3↑^(g(n)-1) 3
অতএব গ্রাহামের সংখ্যা G কে লেখা যায়, G = g(64) = 3↑^(g(63))3
বুঝতে পারছেন, g(63) এর মান আসবে g(62) হতে। g(62) আসবে g(61) হতে। এভাবে g(2) এর মান আসবে g(1) হতে, আর g(1) হলো 3↑↑↑↑3।
এবার আসা যাক ↑ এর ব্যবহার সম্পর্কে।
3↑3 = 3^3 = 27
3↑↑3 = 3↑(3↑3) = 3↑27= 3^27=7625597484987
3↑↑↑3 = 3↑↑(3↑↑3)= 3↑↑(3↑3↑3) = 3↑ 3↑ 3……3↑ 3↑ 3…………3↑ 3↑ 3 (7625597484987 বার 3↑ আসবে)= বিশাল
3↑↑↑3 সংখ্যাটিই একটি যথেষ্ট বড় সংখ্যা। তাহলে গ্রাহামের নাম্বারের প্রথম g হবে,
g(1) = 3↑↑↑↑3=3↑↑↑…………….3↑↑↑3= সুবিশাল
যদি g(2) = 3↑↑…………↑3 (মাঝথানে g(1) এর সমান সংখ্যক ↑)
এভাবে যেতে যেতে g(64) এর মান হবে গ্রাহামের সংখ্যা। এটা যে কত বিশাল একটা সংখ্যা তা চিন্তা করতে গেলে শুধু মাথাই ঘুরায়। এর আগে যত সংখ্যা আলোচনার করেছি সেগুলো এর বিশালত্বের কাছে অসহায় রকমের ছোটো। সেটা চিন্তা করলেও মাথা ঘোরায়। আমার সত্যি সত্যি এখন মাথা ঘোরাচ্ছে!

“গণিতের সৌন্দর্য” বই হতে নেওয়া হয়েছে। সম্পূর্ণ বইটি পড়া যাবে বিজ্ঞান পত্রিকায়।
বইয়ের সূচীপত্র ও সব অধ্যায়র লিংকের জন্য এখানে ক্লিক করুন।

-ইমতিয়াজ আহমেদ
সম্পাদক, বিজ্ঞান পত্রিকা
[লেখকের ফেসবুক প্রোফাইল]

বিজ্ঞান পত্রিকার ইউটিউব চ্যানেল চালু হয়েছে।
এই লিংকে ক্লিক করে ইউটিউব চ্যানেল হতে ভিডিও দেখুন।
- Advertisement -

একটি উত্তর ত্যাগ

আপনার মন্তব্য লিখুন দয়া করে!
এখানে আপনার নাম লিখুন দয়া করে

সম্পর্কিত খবর

- Advertisement -
- Advertisement -
- Advertisement -

Stay Connected

যুক্ত থাকুন

302,183ভক্তমত
780গ্রাহকদেরসাবস্ক্রাইব

Must Read

সম্পর্কিত পোস্ট

- Advertisement -
- Advertisement -

সবসময়ের জনপ্রিয়

সবচেয়ে আলোচিত

- Advertisement -
- Advertisement -
- Advertisement -
- Advertisement -
- Advertisement -
- Advertisement -
- Advertisement -