Top header

সমুদ্রসীমা প্যারাডক্স

0

সমুদ্রসীমা প্যারাডক্স একটি অদ্ভুতুড়ে জ্যামিতিক সমস্যা। শুরু করা যাক অস্ট্রেলিয়ার সমুদ্রতটের পরিসীমা দিয়ে। ১৯৭৮ সালে প্রকাশিত Year Book of Australia তে অস্ট্রেলিয়ার সমুদ্রতটের পরিসীমা দেওয়া হয়েছে ৩৬,৭৩৫ কিলোমিটার। অপরদিকে Australia Handbook বইতে এই সীমা ১৯,৩২০ কিলোমিটার উল্লেখ করা হয়েছে। স্পষ্টতঃই বোঝা যাচ্ছে যে দ্বিতীয় ক্ষেত্রে পরিসীমা নির্ধারণ করা হয়েছে প্রথমটির প্রায় অর্ধেক!

আমরা যখন কোনো কিছু পরিমাপ করি তখন বিভিন্ন ধরনের পরিমাপগত সীমাবদ্ধতার কারণে পরিমাপে কিছুটা ঊনিশ-বিশ হয়ে থাকে বটে, কিন্তু তাই বলে কখনো পরিমানে তা দ্বিগুণ বা অর্ধেক হয়ে যায় না। তাহলে সমুদ্রসীমা নির্ধারণ করতে গিয়ে কেন এই সমস্যায় পড়তে হচ্ছে? এর কারণটি হচ্ছে গণিতের ভাষায় ফ্যাক্টাল মাত্রা (fractal dimension)। উপরে অস্ট্রেলিয়ার সমুদ্রতটের যে দু’টি পরিসীমার উল্লেখ করা হয়েছে তাদের উভয়টিই নিজ নিজ ক্ষেত্রে আপাতদৃষ্টিতে সঠিক অথচ এদের মান পুরোপুরি ভিন্ন। এই কারণে সমুদ্রসীমা পরিমাপ করতে গিয়ে একধরনের প্যারাডক্সের উদ্ভব হয় (প্যারাডক্স সম্বন্ধে এর আগের একটি লেখায় আলোচনা করা হয়েছে)। গণিতে এই প্যারাডক্সটি coastline paradox বা সমুদ্রসীমা প্যারাডক্স নামে পরিচিত।

এই বিষয়টিকে ভালোভাবে বোঝার জন্য এবং বিষয়টির উপর আরো ভালোভাবে গণিত প্রয়োগের জন্য আমরা “কোচের তুষার কণার (Koch snow flake)” অবতারণা করতে পারি। হেলগ ভন কোচ একধরনের তুষার কণা সদৃশ জ্যামিতিক আকৃতির কথা চিন্তা করেছিলেন, যার প্রতিটি বাহুকে আরো সূক্ষ বাহুতে বিভক্ত করে প্রকাশ করা যায়। উদাহরণ হিসেবে আমরা একটি ত্রিভুজ নিয়ে শুরু করতে পারি (প্রথম চিত্র)। এই ত্রিভুজের প্রতিটি বাহুকে প্রাথমিক ত্রিভুজটির অনুপাতে বিভাজিত করে আমরা একটি তুষারকণাসদৃশ চিত্র পাই। এই তুষার কণা আকৃতির প্রতিটি বাহুকে একই ভাবে আমরা আরো ছোট বাহুতে বিভক্ত করতে পারি। এইভাবে আমরা যদি প্রতিটি বাহুকে ক্রমাগত বিভাজিত করে যেতে থাকি তাহলে এটিকে অসীম পর্যন্ত নিয়ে যাওয়া সম্ভব। এবং গণিতের ভাষায় এই প্রতিটি ধাপকে একেকটি ইটারেশন (iteration) বলা হয়। যেমন: আমরা যদি আমাদের প্রাথমিক ত্রিভুজটিকে নিয়ে সাতবার ইটারেশন করি তাহলে প্রতিটি ইটেরশনের পরে প্রাপ্ত চিত্রের ক্রম হবে নিন্মরূপ:

 

Von_Koch_curve-0 Von_Koch_curve-1 Von_Koch_curve-2 Von_Koch_curve-3 Von_Koch_curve-4 Von_Koch_curve-5 Von_Koch_curve-6

 

শেষের দিকে পার্থক্য আর সহজে বোঝা যাচ্ছে না, কারন বাহুগুলোর বিভজনে বেশ সূক্ষতা তৈরি হচ্ছে। এভাবে আমরা যদি একটি ক্ষেত্রের বাহুগুলোকে বিভক্ত করে যাই তাহলে প্রতিটি ইটারেশনে ক্ষেত্রটির পরিসীমা বৃদ্ধি পেতে থাকবে আগের ধাপের এক তৃতীয়াংশ হারে। যদি এই বিষয়টি অসীম পর্যন্ত চালিয়ে যাই তাহলে একটি অসীম পরিসীমা বিশিষ্ট সসীম ক্ষেত্র আমরা পাব। ক্ষেত্রফল যে সসীম হবে সেটি আমরা কিভাবে বুঝতে পারি? আমরা একটি পেন্সিল দিয়ে সহজেই সীমাবদ্ধ ক্ষেত্রটিকে ভরাট করে ফেলতে পারব। কিন্তু আমরা যদি একটি পেন্সিল দিয়ে ক্ষেত্রটির পরিসীমার উপর দিয়ে দাগ টেনে যেতে থাকি তাহলে সারাজীবনেও শেষ করতে পারব না, কারণ রেখাটি অসীম। যতই আমরা এই রেখাটিকে বিবর্ধিত করে দেখার চেষ্টা করব ততোই দেখব এটি আরো সূক্ষ ভাগে বিভক্ত।

তবে অসীম পর্যন্ত না গিয়ে একটি নির্দিষ্ট ইটারেশনের জন্য পরিসীমা নির্ণয় করা যাক:

যদি ইটারেশন সংখ্যা n হয় তাহলে যেহেতু প্রতিধাপে বাহুর সংখ্যা চারগুণ হয়ে যায়, তাই মোট বাহুর সংখ্যা হবে,

Picture1

আবার, যদি প্রাথমিক ত্রিভুজটির একেকটি বাহুর দৈর্ঘ্য s হয়, তাহলে n ইটারেশনের পরে প্রতিটি বাহুর দৈর্ঘ্য হবে,

Picture2

মোট পরিসীমা হবে তাই,

Picture3

এখান থেকে আমাদের সমুদ্রসীমা প্যারাডক্সে আসা যায়। কোচের তুষার কণাটি একধরনের ফ্র্যাক্টালের উদাহরণ (সহজ ভাবে বললে ফ্রাক্টাল হচ্ছে সেসব জ্যামিতিক আকৃতি যেগুলোকে বিবর্ধিত করতে থাকলে তাদের প্যাটার্ন পুনরাবৃত্ত হতে থাকে)। একই ভাবে আমাদের বাস্তবিক পৃথিবীতে রাস্ট্রীয় বা সমুদ্রসীমাগুলোও একেকটি ফ্র্যাক্টালের মতো। যেমন: বাংলাদেশের মানচিত্রটি আমরা বিভিন্ন মাত্রার খুঁটিনাটিসহ আঁকতে পারি।Picture4

চাইলে এই মানচিত্রকে এতোই সুক্ষ থেকে সুক্ষতর করতে পারি যে আমরা পরমাণু পর্যায় পর্যন্ত চলে যেতে পারি। এবং একই কারণে আমরা একটি দেশের পরিসীমাকেও তার খুঁটিনাটির সূক্ষতা অনুযায়ী আপাতদৃষ্টিতে অসীম পর্যন্ত নিয়ে যেতে পারি।

সমুদ্রতটের সীমা নির্ণয়ের এই সীমাবদ্ধতা নিয়ে ১৯৬৭ সালে গণিতবিদ বেনোয়া ম্যান্ডেলব্রট বিজ্ঞানের রাজকীয় জার্নাল ‘সায়েন্স’-এ “How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension” শিরোনামে একটি গবেষণাপত্র প্রকাশ করেন। সেখানে তিনি ব্রিটেনের সমু্দ্রসীমা নির্ণয়ের সমস্যা তুলে ধরেন। তিনি বলেন যে, একটি দেশের সমুদ্রসীমা কত হবে তা নির্ভর করবে আমরা কতটুকু দৈর্ঘ্যের কাঠি দিয়ে তা পরিমাপ করব তার উপর। আমরা যদি ৫০ কিলোমিটার দৈর্ঘ্যের কাঠি দিয়ে ব্রিটেনের সমুদ্রসীমা পরিমাপ করতে যাই তাহলে তার সীমা পাওয়া যাবে ৩৪০০ কিলোমিটার। আর যদি ২০০ কিলোমিটার লম্বা কাঠি দিয়ে পরিমাপ করি তাহলে পাওয়া যাবে ২৪০০ কিলোমিটার। আমরা কাঠির দৈর্ঘ্য যতো ছোট নেব ততই আরো সুক্ষ ও ছোটখাট বাঁক হিসেব করতে পারব (নিচের চিত্র দ্রষ্টব্য) এবং তাই সমুদ্র সীমার পরিমানও ততোই বৃদ্ধি পেতে থাকবে। Picture5

 

তাহলে এই সমস্যা থেকে পরিত্রাণ পাওয়ার উপায় কী? আমরা কি সুনির্দিষ্টভাবে সমুদ্রসীমা গণনা করতে পারব না? উত্তর হচ্ছে: না, সেই উপায় নেই। অবশ্য সমুদ্রসীমা নির্ণয়ের জন্য একটি পরোক্ষ ব্যবস্থা গ্রহণ করা যায় আর তা হচ্ছে আমরা যদি যাবতীয় সীমারেখাগুলোকে একই নির্দিষ্ট কাঠি দিয়ে পরিমাপ করি এবং সেই কাঠির দৈর্ঘ্য উল্লেখ করে দিই তাহলে প্রতিটি সীমার পরিমাপের মধ্যে একটি তুলনামূলক মান পাওয়া যাবে। এই পদ্ধতিতে আমরা যদিও সঠিক পরিসীমা পাব না, তবে কোনো পরিসীমা কার তুলনায় কতটুকু ছোট বা বড় তার ধারনা পেয়ে যাব।

-ইমতিয়াজ আহমেদ
সম্পাদক, বিজ্ঞান পত্রিকা
[ফেসবুক প্রোফাইল]

Share.

মন্তব্য করুন